Positional isomers of aspirin are equally potent in inhibiting colon cancer cell growth: differences in mode of cyclooxygenase inhibition.
نویسندگان
چکیده
We compared the differential effects of positional isomers of acetylsalicylic acid (o-ASA, m-ASA, and p-ASA) on cyclooxygenase (COX) inhibition, gastric prostaglandin E2 (PGE2), malondialdehyde, tumor necrosis factor-alpha (TNF-α) levels, superoxide dismutase (SOD) activity, human adenocarcinoma colon cancer cell growth inhibition, cell proliferation, apoptosis, and cell-cycle progression. We also evaluated the gastric toxicity exerted by ASA isomers. All ASA isomers inhibit COX enzymes, but only the o-ASA exerted an irreversible inhibitory profile. We did not observe a significant difference between ASA isomers in their ability to decrease the in vivo synthesis of PGE2 and SOD activity. Furthermore, all isomers increased the levels of gastric and TNF-α when administered orally at equimolar doses. We observed a dose-dependent cell growth inhibitory effect; the order of potency was p-ASA > m-ASA ≈ o-ASA. There was a dose-dependent decrease in cell proliferation and an increase in apoptosis, with a concomitant Go/G1 arrest. The ulcerogenic profile of the three ASA isomers showed a significant difference between o-ASA (aspirin) and its two positional isomers when administered orally at equimolar doses (1 mmol/kg); the ulcer index (UI) for o-ASA indicated extensive mucosal injury (UI = 38), whereas m-ASA and p-ASA produced a significantly decreased toxic response (UI = 12 and 8, respectively) under the same experimental conditions. These results suggest that the three positional isomers of ASA exert practically the same biologic profile in vitro and in vivo but showed different safety profiles. The mechanism of gastric ulcer formation exerted by aspirin and its two isomers warrants a more detailed and thorough investigation.
منابع مشابه
Positional isomerism markedly affects the growth inhibition of colon cancer cells by NOSH-aspirin: COX inhibition and modeling☆
We recently reported the synthesis of NOSH-aspirin, a novel hybrid that releases both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e. ortho-NOSH-aspirin (o-NOSH-aspirin). In the present study, we compared the effects of the positional isomers of NOSH-ASA (o-NOSH-asp...
متن کاملIn vitro metabolism of nitric oxide-donating aspirin: the effect of positional isomerism.
NO-donating aspirin (NO-ASA) is a potentially important chemopreventive agent against cancer. Since positional isomerism affects strongly its potency in inhibiting colon cancer cell growth, we studied the metabolic transformations of its ortho-, meta-, and para-isomers in rat liver and colon cytosolic, microsomal, and mitochondrial fractions as well as in intact HT-29 human colon cancer cells. ...
متن کاملPositional isomerism markedly affects the growth inhibition of colon cancer cells by nitric oxide-donating aspirin in vitro and in vivo.
NO-donating aspirin (NO-ASA), a novel pharmacological agent currently undergoing clinical testing, consists of ASA to which a nitrate group is covalently linked via a spacer molecule. We synthesized the three positional isomers of NO-ASA with respect to the -CH(2)ONO(2) group (ortho, meta, and para) and examined whether this isomerism affects the biological activity of NO-ASA on HT-29 human col...
متن کاملThe differential cell signaling effects of two positional isomers of the anticancer NO-donating aspirin.
We studied the mechanism by which the para and meta positional isomers of nitric oxide-donating aspirin (NO-ASA) inhibit human colon cancer cell growth. These compounds are promising chemopreventive agents and represent a broader class of novel drugs. The two isomers differ drastically in their 24-h IC50s for cell growth, which are 12 microM for p-NO-ASA and 230 microM for m-NO-ASA. We examined...
متن کاملمطالعه ی مروری بر روی اثر اسیدهای چرب لینولئیک کونژوگه(Conjugated linoleic acids) بر مهار سلولهای سرطانی و مکانیسم های احتمالی تاثیر آنها
Conjugated Linoleic Acids (CLAs) are composed of positional and stereo isomers of octadecadienoate (18:2). They are found in foods derived from ruminants (beef and lamb as well as dairy products from these sources). When a mixture of isomers is fed to experimental animals, chemically induced cancer, tumorogenesis in mammary gland, colon and skin is decreased. Mechanisms of inhibition of carcino...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 345 1 شماره
صفحات -
تاریخ انتشار 2013